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The motion of a line vortex moving past a one-
dimensional flexible fibre is examined theoretically. A
Schwarz–Christoffel conformal mapping enables the
analytical solution of the potential flow field and its
hydrodynamic moment on the flexible fibre, which is
composed of a rigid segment constrained to angular
motions on a wedge. The hydroelastic coupling of
the vortex path and fibre motion affects the noise
signature, which is evaluated for the special case of
acoustically compact fibres embedded in a half plane.
Results from this analysis attempt to address how
the coupled interactions between vortical sources and
flexible barbules on the upper surface of owl wings
may contribute to their acoustic stealth. The analytical
formulation is also amenable to application to vortex
sound prediction from flexible trailing edges provided
that an appropriate acoustic Green’s function can be
determined.

This article is part of the theme issue ‘Frontiers
of aeroacoustics research: theory, computation and
experiment’.

1. Introduction
Owls are believed to fly in effective silence as a result
of three distinctive and unique physical features [1]:
a comb of stiff feathers at the wing leading edge,
a fringe of flexible filaments at the trailing edges of
the feathers and wing, and a soft downy coating on
the upper wing surface. In contrast to the amount of
research literature devoted to leading- and trailing-edge
modifications for turbulence noise mitigation [2–13],
the mechanisms for acoustic attenuation by the downy
material on owl wings have received relatively little
attention. Despite this lack of research activity, Lilley [14]
postulated that the down material was essential to the
owl ‘hush kit’, suggesting that the large bandwidth of
noise suppression resulted from a mechanism of the
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Figure 1. Representation of owl down barbules (great grey owl, Strix nebulosa, (a); snowy owl, Nyctea scandiaca, (b)) on
the upper surface of flight feathers as a two-dimensional fibre (c) that is elastically restrained to rotate about the origin.
A point vortex of strength Γ ′ represents a turbulent eddy immersed in a uniform fluid flow with speed U. (Online version
in colour.)

down to eliminate turbulence noise at its source. Clark et al. [15] discovered the unique structure
of the down material, which is composed of several flexible barbules (fibres) that interlock to
form a porous barrier that offsets the boundary-layer flow and its noise sources from the wing
surface by a distance of the order of a millimetre. Their experiments with various porous canopies
demonstrated that surface pressure fluctuation level reductions of up to 30 dB could be achieved
with this small offset, and complementary theoretical models developed in that investigation
linked the low-frequency level reductions to the mixing-layer instability occurring at the
suspended porous layer. This work led to the development of rigid, streamwise-aligned structures
termed ‘finlets’ designed to modify the boundary layer upstream of the trailing edge before
encountering the trailing edge, which yielded frequency-dependent far-field noise reductions of
up to 10 dB on a DU96-W180 aerofoil section relative to its untreated counterpart [16]. Jaworski
& Peake [17] provide a detailed review of this and other noise-reduction technologies inspired by
the aeroacoustics of owls.

The present study extends the theoretical model of Clark et al. [15] to include the effect of
hydroelastic fibre motions on the motion of the incoming vortex and the resulting noise generation.
A single fibre is modelled to represent the physical limit of a sparse distribution of down fibres, as
illustrated in figure 1. The basic idea here is to determine what role the hydrodynamic movement
of the flexible down fibres in the presence of an advecting vortex has on the strength of its acoustic
field relative to its stationary-fibre counterpart. Previous works have addressed the vortex noise
generation from rigid fibres perpendicular to a half-plane [18–20], and the Schwarz–Christoffel
conformal mapping of Clark et al. [15] and Lighthill [21] for arbitrary fibre inclinations enable
the analysis of coupled dynamic motions of the vortex and fibre. A generalized mathematical
model for a vortex moving past a rigid wedge with a movable fibre extending from its vertex is
presented in §2, which includes the special case of a flexible fibre extending from a half plane
investigated in this paper. A theoretical framework for the hydrodynamic coupling between the
rotational motion of the fibre to the vortex path is also presented. Section 3 investigates the
dynamic aeroelastic coupling between the angular motions of the elastically restrained fibre and
the vortex path in a steady mean flow, and the resulting noise generation is estimated from vortex
sound theory [20]. Conclusions from this investigation are presented in §4.

2. Mathematical model

(a) Conformal mapping
The mathematical analysis for sound due to a vortex passing round an inclined fibre (cf. figure 2)
follows from the procedure outlined by Howe [20] for a vortex passing over a rigid, upright
spoiler in a background mean flow, which was extended for arbitrary angles of inclination
θ ∈ (0, 1) by Clark et al. [15] and whose surface geometry appears in Lighthill [21] in the context of
the Weis-Fogh clap-and-fling lift mechanism. The present paper generalizes the half plane in these
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Figure 2. Generalized conformal mapping of a wedge with a finite extension from its tip. The Schwarz–Christoffel
transformation relates the physical z-plane to the ζ -plane where the vortex motion problem is solved. The impermeable wall
condition is satisfied automatically by adding an appropriate image vortex in the solid boundary that is complemented by a
kinematic boundary condition on the fibre. For conformalmaps,Γ ′ =Γ . Uniform background flows are considered only when
α = 1 for the case of a half plane. (Online version in colour.)

works to an arbitrary wedge, which may also be used for vortex sound analyses of trailing edges.
The mapping between the physical z-plane and the ζ -plane is achieved using the Schwarz–
Christoffel transformation [22]

z= K
2 − α

(ζ + 1)1−θ (ζ − 1)1−α+θ . (2.1)

The mapping constants b and K are determined by linking the z- and ζ -planes, yielding

b= α − 2θ

2 − α
and K = (2 − α)h

f (α, θ )
, (2.2)

where

f (α, θ ) = 22−α(1 − θ )1−θ (1 − α + θ )1−α+θ

(2 − α)2−α
eiπ (1−α). (2.3)

The expression f (α, θ ) = exp(iπ (1 − α))g(α, θ ) defines real-valued g(α, θ ). The mapping between
the z- and ζ -planes is completed by equating the background mean flows far from the fibre,
which can be achieved for finite flow speeds only in the special case of the planar wall (α = 1)
[23, (pp. 410–412)], where V =KU.

(b) Equations of vortex motion
The nonlinear equations for the motion of the vortex at z0(t) = x0(t) + i y0(t) are

dz̄0

dt
= dx0

dt
− i

dy0

dt

= − iΓ
4π

ζ ′′(z0)
ζ ′(z0)

+
(

iΓ
2π

1
ζ (z0) − ζ̄ (z0)

+ UK − h2

4
dθ

dt

∫ 1

−1

|Zf(χ , α, θ )|2
(χ − ζ (z0))2 dχ

)
ζ ′(z0), (2.4)

where
ζ ′′(z0)
ζ ′(z0)

=
[
θ (ζ + 1)−1 − (ζ − b)−1 + (α − θ )(ζ − 1)−1

]
ζ ′(z0). (2.5)

Here the primes denote ( )′ = d/dz, and the integral

I(ζ , α, θ ) =
∫ 1

−1

|Zf(χ , α, θ )|2
(χ − ζ )2 dχ (2.6)

follows from the kinematic boundary condition imposed on the moving fibre, which is detailed in
appendix A; equation (A 7) defines function |Zf|. In general, (2.4) depends implicitly on the vortex
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position through ζ (z0), which requires the solution of (2.1) for a given z0. The vortex equations of
motion (2.4) can be expressed in dimensionless form

dZ̄
dT

=
{
−i

f (α, θ )
2 − α

[
θ (ζ + 1)−1 − (ζ − b)−1 + (α − θ )(ζ − 1)−1 − 2

ζ − ζ̄
− i

1
4

dθ

dT
I(ζ , α, θ )

]
+ ε

}
× (ζ + 1)θ (ζ − b)−1(ζ − 1)α−θ , (2.7)

where ζ = ζ (Z), using the following dimensionless groups:

Z= z0

h
, S= Γ

4πh
, T = tS

h
, ε = U

S
. (2.8)

(c) Dynamic fibre model
The vortex equations of motion (2.7) hold generally for all fibre angles, which in the dynamic
case θ = θ (t). The fibre motion may be either prescribed or be the solution of an oscillator model
for the perturbation angle θ̂ about elastic equilibrium position θ0, such that θ = θ0 + θ̂ . The linear
oscillator model considered here is

I0
d2θ̂

dt2
+ cθ

dθ̂

dt
+ kθ θ̂ =M0, (2.9)

which in dimensionless form may be written as

d2θ̂

dT2 + 2Ωcd
dθ̂

dT
+ Ω2θ̂ = μ−1CM0 . (2.10)

Here ω2
θ = kθ /Iθ , Ω = ωθh/S, μ = I0/(ρh4), cd = cθ /(2I0ωθ ), CM0 =M0/(ρS2h2) and ρ is the fluid

density. The coefficient of moment CM0 is computed by integrating the instantaneous pressure
difference across the fibre times its moment arm from the elastic axis. Four integral terms arise
that represent individual contributions from the unsteady and dynamic head portions of the
linearized Bernoulli equation evaluated on the fibre surface. These integrals are first formulated
in the z-plane and then recast as integrations along the ξ -axis in the ζ -plane.

The total unsteady moment coefficient in the anti-clockwise direction is

CM0 = 2 − α

g2(α, θ )

[
M1

d2θ

dT2 + M2

(
dθ

dT

)2
+ M3

∣∣∣∣dZ
dT

∣∣∣∣ + M4

]
. (2.11)

Time-dependent coefficients M1, M2 and M3 are integrals resulting from the unsteady pressure
contribution and are given in appendix B. Coefficient M4 is linked to the moment contribution
associated with the dynamic head,

M4 = −1
2
−
∫ 1

−1

(A2 + ε2 − 2Aε cos πα)(1 − ξ2)
ξ − b

dξ , (2.12)

where the Cauchy principal value must be taken, and

A= g(α, θ )
2 − α

(
4η0(T)

(ξ − ξ0(T))2 + η2
0(T)

− 1
4

dθ

dT
I(ξ , α, θ )

)
. (2.13)

Moment integrals (2.12) and (B 1)–(B 3) determine the instantaneous hydrodynamic moment
(2.11) in (2.10) acting on the flexible fibre, which can be evaluated using standard numerical
integration routines. A fully hydroelastic numerical simulation of the vortex–fibre interaction
round a generalized wedge is made possible with the present approach by integrating (2.7) and
(2.10) forward in time. In addition to the owl down model problem considered in this paper, this
numerical framework also enables the examination of vortex sound generation from link models
of flexible trailing edges with finite or zero trailing-edge angles for cases where α < 1, which is
beyond the scope of this paper but will be pursued in future work. In addition, the singular flow
velocity at the fibre tip in the present theoretical model may be regularized by vortex shedding,
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which could be pursued using point vortices or other low-order models [24–28] to investigate this
vorticity production on the acoustic signature.

(d) Acoustic emission
In the special case of a fibre protruding from a half plane (α = 1, cf. figure 1), the acoustic emission
from the fibre can be expressed in terms of the vortex path, the fibre angular motion and the
streamwise component of the Kirchhoff vector, provided that the fibre is acoustically compact.
Under this assumption, Howe [20, (p. 193)] defines a function

W(Z) = d
dz

(Kζ ) = (ζ + 1)θ (ζ − b)−1(ζ − 1)α−θ , (2.14)

such that the reduced acoustic pressure in the far field due to the vortex motion is

PΓ (x, t) ≡ pΓ (x, t)

ρS2
√
M sin β (h/|x|)1/2 ≈ 25/2 ∂

∂T

∫∞

0
Im

[
W(Z)

dZ

dT̂
([T] − λ2)

]
dλ. (2.15)

The second term of the integrand implies the functional dependence dZ/dT̂([T] − λ2) = u([T] −
λ2) + iv([T] − λ2), and T̂ = [T] − λ2. Equation (2.15) measures the acoustic pressure at far-field
location x, which is inclined at an angle β measured clockwise from the y-direction. In (2.15), c0
is the isentropic speed of sound, the Mach number is defined as M= S/c0, and [T] is the non-
dimensional retarded time [15]. It is worthwhile to note that the influence of the fibre position on
the vortex sound is handled intrinsically by the time dependence of θ in W(Z).

The acceleration of the fibre generates an additional dipolar acoustic emission that must also
be included in the total acoustic field [26]. The pressure contribution from the fibre acceleration
is [20, (p. 127)]

pf(x, t) = ρ

∫∞

−∞

∮
Sf

∂vn

∂τ
(y, τ )G(x, y, t − τ ) dSf(y) dτ , |x| → ∞, (2.16)

where vn is the velocity normal to the moving solid boundary Sf. The compact Green’s function
for a compact body at a plane wall is [20, (p. 138)]

G(x,y, t − τ ) ≈ xY1

π
√

2c0|x|3/2
∂

∂t

{
H(t − τ − |x|/c0)√

t − τ − |x|/c0

}
, |x| → ∞, (2.17)

which involves Heaviside function H. The term Y1 denotes the first component of the Kirchhoff
vector that corresponds to the ideal flow of unit speed in the x-direction passing round the fibre,
which in this configuration is Y1 = Re[Kζ ] = hξ/g(α = 1, θ ). Equation (2.16) may be reorganized
using (2.1), (2.8) and (2.17) to identify the reduced acoustic pressure from fibre acceleration

Pf(x, t) ≈ −21/2

π

∂

∂T

∫∞

0

[
If(θ )

g3(α = 1, θ )
d2θ

dT̂2

]
([T] − λ2) dλ, (2.18)

using the same pressure scaling as in (2.15). The expression in the brackets of (2.18) is a function
of T̂ = [T] − λ2, and

If(θ ) =
∫ 1−2θ

−1
F(ξ , θ ) dξ −

∫ 1

1−2θ

F(ξ , θ ) dξ , (2.19)

where
F(ξ , θ ) = ξ [ξ − (1 − 2θ )](1 + ξ )1−2θ (1 − ξ )2θ−1. (2.20)

The total reduced pressure in the acoustic far field is P(x, t) = PΓ (x, t) + Pf(x, t).

3. Results
Previous works have considered the sound generated by a vortex passing over an oscillating [21]
or a stationary, upright [18–20] or leaning [15] two-dimensional barrier emerging from a half
plane. The mathematical model presented in §2 extends beyond these works in two ways. First,
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Figure 3. Dependence of the acoustic signature on oscillation frequency of the fibreω and initial phaseψ relative to the fixed
fibre case without a mean flow, ε = 0: (a)ω = 0.1; (b)ω = 1; (c)ω = 10. The retarded time [T] is referenced to the instant
the vortex passes x = 0. (Online version in colour.)

the unsteady fibre motion and resulting hydrodynamic moment due to an incident vortex are
modelled. Second, the half plane is generalized as a solid wedge, which enables vortex motion
prediction round edges of arbitrary wedge angle with an elastic extension. In this paper, the
path of a vortex in a uniform flow and its interaction with prescribed, harmonic fibre motions
or aeroelastic motions due to hydrodynamic vortex–fibre coupling are evaluated to anticipate
their effect on the far-field acoustic signature.

(a) Prescribed fibre motion
To form a basis for comparison against prior works, all vortex paths investigated herein start
far upstream of the fibre at Z= −10 + 0.75i unless stated otherwise. The fibre angular position
is described by θ (T) = θ0 + θ1 sin(ωT + ψ), where θ0 = 0.5 and θ1 = 0.1 to produce a harmonic
oscillation about the upright fibre position. The relative starting positions of the vortex and fibre
are phased by ψ = 0, π/2, π and 3π/2, and the frequency is varied across ω = 0.1, 1 and 10. Vortex
trajectories and acoustic emissions are investigated for scenarios without (ε = 0) and with (ε > 0)
a background mean flow.

In the absence of a mean flow, figure 3 shows the influence of the fibre oscillation frequency and
the initially phasing between the vortex and fibre on the reduced acoustic pressure, as compared
to the limiting case of a stationary, upright fibre, whose results have been verified against the
literature [19,20]. To facilitate comparison, the retarded time is referenced with respect to when
the vortex crosses x= 0. For ω = 0.1 and ω = 1, the effect of the change in phase angle ψ is
predominantly to shift the acoustic signature left or right, which agrees with the shift in the vortex
path in figure 4a,b. The extrema of the acoustic signals increase with the oscillating frequency ω,
with the exception of ω = 1 when ψ = π/2 or 3π/2. In these cases, figure 4b indicates that the
phase between the vortex and fibre motion increases the minimum distance between the two,
leading to a weaker acoustic emission. For the largest oscillating frequency considered, ω = 10,
it is clear that prescribed fibre motion modulates the acoustic signal and leads to large increases
in the acoustic noise level. These results are consistent with the fact that a larger relative velocity
between the vortex and fibre when in close proximity leads to peaks in the acoustic signature.
The high oscillation frequency also affects the vortex trajectory, bringing the vortex nearer the
fibre and breaking strongly the left–right symmetry of the vortex path.

The qualitative parametric trends for ε = 0 also hold when a mean flow of magnitude ε = 1 is
introduced in figures 5 and 6. With mean flow, a case is again found for ω = 1 when the oscillating
fibre creates a weaker acoustic output than for a fixed fibre, occurring instead at ψ = 0, which
indicates that the background flow also plays a substantial role in the phasing between the vortex
and fibre motions. As anticipated, the acoustic pressure extrema occur at greater magnitudes due
to the enhanced relative velocities between the vortex and fibre when in closest proximity.
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Figure 4. Vortex trajectories past an oscillating fibre of frequency ω with initial phase ψ without a mean flow, ε = 0:
(a)ω = 0.1; (b)ω = 1; (c)ω = 10. The grey sector indicates the region in which the fibre oscillates. (Online version in colour.)

These results for vortex sound generated by a fibre oscillating with prescribed motion
suggest at least two strategies in which fibre unsteadiness could weaken the resulting acoustic
emission. First, if the phasing of the motion influences the vortex trajectory in a way that
increases the minimum distance between the vortex and fibre, the peaks of the acoustic signature
are reduced. Second, the acoustic emission is reduced when the speed of the vortex in close
proximity to the fibre is reduced. These strategies based on the dynamic vortex–fibre interplay
are supported by the fact that the reduced acoustic pressure PΓ due to the vortex dominates
the total acoustic field. The radiation due to the angular acceleration of the fibre is largest (but
still relatively insignificant) for ω = 10 with an amplitude of |Pf| ≈ 1.04; this acoustic pressure
amplitude changes by a factor of ω2 to render this contribution negligible at smaller fibre vibration
frequencies.
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Figure 5. Dependence of the acoustic signature on oscillation frequency of the fibreω and initial phaseψ relative to the fixed
fibre case with a mean flow, ε = 1: (a)ω = 0.1; (b)ω = 1; (c)ω = 10. The retarded time [T] is referenced to the instant the
vortex passes x = 0. (Online version in colour.)
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Figure 7. Dynamic and acoustic responses of a flexible fibre immersed in a uniform flow that is aeroelastically coupled to an
incident point vortex, ε = 1: (a) far-field acoustic pressure as a function of retarded time; (b) angular fibre displacement as a
function of non-dimensional time. Initial vortex placement is Z0 = −10 + 3i. (Online version in colour.)

(b) Aeroelastic vortex–fibre interactions
The modelling framework is now demonstrated for the aeroelastic case of a incident vortex with
initial position Z= −10 + 3i and a mean background flow with strength ε = 1, recalling that ε is
defined by (2.8) as the ratio of the mean flow speed to the characteristic vortex speed. The elastic
equilibrium fibre position is set to θ0 = 0.5, and the aeroelastic parameters representative of an owl
down fibre in air are Ω = 0.761, cd = 1.85 × 10−3 and μ = 0.130, as detailed in appendix C. Three
vortex–fibre interaction scenarios are explored and compared to one another with respect to the
predicted vortex paths and acoustic signatures: (i) a rigid fibre; (ii) a flexible fibre that is initially
still at the elastic equilibrium position θ0 = 0.5 and (iii) a flexible fibre that is initially still but is
displaced away from elastic equilibrium at θ = 0.6. In the latter case, the fibre oscillates under
free vibration before the aeroelastic coupling to the incident vortex affects its dynamical response.
Lastly, some qualitative changes in the acoustic emission and fibre dynamics are investigated for
various initial vertical locations of the incoming vortex.

Figure 7a presents and compares the far-field acoustic prediction for each vortex–fibre scenario.
For the aeroelastic parameters considered here, the case of the fibre initially at the equilibrium
position yields an acoustic signature that is indistinguishable from the rigid fibre case. The
corresponding low-amplitude angular displacement history shown in figure 7b corroborates the
minor influence of the fibre motion on the noise generation. However, the impact of aeroelastic
vortex–fibre coupling on the acoustic emission is more substantial for the case when the fibre
is initially displaced away from static equilibrium. In this case, figure 7b demonstrates that the
frequency of fibre oscillation is modulated higher when under the influence of the incident vortex.
The acoustic signal for this case is suggestive of a superposition of the rigid-fibre noise signature
with higher-frequency oscillatory content that is due to the fibre oscillations. This high-frequency
content is modulated in the same manner as the time history of θ in figure 7b and indicates that
the changes in the acoustic signature arise primarily from the fibre oscillatory motions; the fact
that the vortex paths of these three cases are virtually coincident lends support to this claim. The
additional noise component due to fibre motions increases the peak acoustic pressure value in the
aeroelastic case.

Figure 8 plots the paths of the incident vortex given the initial position Z0 = −6 + Y0i
with ε = 1. The coincident paths for the aeroelastic cases mentioned above fall on the line for
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strongest encounter when Y0 = 0.15. (Online version in colour.)
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Figure 9. Dynamic and acoustic responses of a flexible fibre immersed in a uniform flow that is aeroelastically coupled
to an incident point vortex as a function of initial vertical position, ε = 1: (a) far-field acoustic pressure as a function of
retarded time; (b) angular fibre displacement as a function of non-dimensional time. Initial vortex placement Z0 = −6 + Y0i.
(Online version in colour.)

Y0 = 0.3, and the influence of the fibre on the upward motion of the incoming vortex increases
with decreasing Y0. Figure 9 shows the corresponding acoustic signals and displacement histories
of the fibre, where the ringing of the fibre at its natural frequency at large Y0 in figure 9b becomes
suppressed by stronger vortex–fibre interactions for lower initial vortex placements. This change
in fibre motion is accompanied in figure 9a by stronger acoustic peaks and changes in the acoustic
response waveform as Y0 decreases. However, it remains unclear from these results alone whether
the fibre could instead be aeroelastically tuned for vortex sound suppression due to the weak
differences between the cases of the rigid and flexible cases of the fibre initially at the equilibrium
position.
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4. Conclusion
A mathematical framework is developed to model the nonlinear trajectory of a vortex under
self-induced motion moving past an oscillating two-dimensional barrier in a wedge. The wedge
formulation enables subsequent analysis of roughness and trailing-edge noise problems with
an elastic extension. In the limit of the wedge forming a half-plane, the problem of vortex-
noise generation from a single two-dimensional barrier (fibre) is carried out, corresponding to
the limit of a sparse distribution of owl down barbules (pennula) on the upper wing surface.
The prescribed harmonic motion of the fibre leads generally to an increase in the extrema in
the acoustic signature as the fibre oscillation frequency and background mean flow velocity
are increased. However, the phase between the vortex path and fibre motion can lead to noise
reductions by altering the vortex trajectory to increase the minimum distance between the vortex
and fibre, and by reducing the relative speed between the vortex and fibre when in close
proximity. For the range of parameters considered, the acoustic emission of the vortex interaction
with the solid surface dominates the acoustic radiation attributed solely to the fibre motion.

Aeroelastic parameters representative of an isolated owl down fibre in air furnish a
preliminary assessment of vortex–fibre coupling effects on the motion of the incident vortex and
the resulting acoustic emission. For the set of parameters considered, the acoustic signatures of
a rigid or flexible fibre that is at static equilibrium at the initial instant are virtually identical. If
the flexible fibre is initially displaced away from equilibrium, the aeroelastic coupling between
the incident vortex and fibre modulates the fibre dynamic response, and the acoustic response
appears as a superposition of the rigid fibre case with higher-frequency sound that depends upon
the fibre motion. Preliminary exploration of aeroelastic effects on the noise production and fibre
dynamics indicate that at close proximity the coupled vortex–fibre interaction dominates the free
vibration dynamics of the fibre, which is accompanied by a change in the waveform of the acoustic
response. Additional work is needed to determine whether or not the hydroelastically coupled
motion of the vortex and fibre would lead to an increase or decrease in the acoustic level, and
in case of the latter event, the parametric ranges where a noise reduction is possible. Further
research into the vortex sound generated by flexible trailing edges is also desired and may be
pursued using the present dynamic conformal mapping framework.
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Appendix A. Complex potential of kinematic boundary condition
The physical requirement that the flow cannot penetrate the (moving) solid boundary produces
an additional term that must be included in the total complex velocity of the vortex–fibre system.
This kinematic boundary condition may be written in vector form as

u · n=U · n on ∂D, (A 1)

where u is the fluid velocity, n is the normal vector into the fluid on the fluid–solid boundary
∂D, and U is the velocity of the boundary, which is identically zero except on the fibre surface.
Boundary condition (A 1) may be reexpressed in complex form by noting that along ∂D, which
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is parametrized here by the arc length s, the tangent vector t is dz/ds and the normal vector n
becomes idz/ds. The complexification of the velocity vectors to u(s) and U(s) converts (A 1) into

Re
[
ū(s) × i

dz
ds

]
= Re

[
Ū(s) × i

dz
ds

]
. (A 2)

One can clearly write ū= dw/dz by introducing complex velocity potential w(z) that is associated
with the kinematic boundary condition, which enables the bracketed term on the left-hand side to
be expressed compactly as idw/ds via the chain rule. The angular velocity of the fibre is iπzdθ/dt
for points z along the fibre, which permits (A 2) to be expressed as

Re
[

i
dw
ds

]
= Re

[
π

dθ

dt
z̄

dz
ds

]
. (A 3)

The identity (d/ds)|z|2 = 2Re[z̄(dz/ds)] enables (A 3) to be directly integrated in s, where the
integration constant may be set to zero without loss of generality. Therefore, the complex velocity
associated with kinematic boundary condition satisfies

Re [iw] = π

2
dθ

dt
|z|2 on ∂D. (A 4)

Now suppose a kinematic boundary condition mapped to the ζ -plane (cf. figure 2) where
W(ζ ) ≡w(z(ζ )). The goal is to determine an analytic function W̃(ζ ) = iW(ζ ) such that the real
part of W̃ equals the right-hand side of (A 4). Straightforward application of the Cauchy integral
formula for Dirichlet boundary value problems on a half plane yields

W̃(ζ ) = 1
2π i

∫∞

−∞

π
2 (dθ/dt)|zf(χ )|2

χ − ζ
dχ , (A 5)

where zf(ξ ) denotes the values z on the fibre surface in the mapped ζ -plane. Therefore,
the complex velocity potential of interest which satisfies the kinematic boundary condition
simplifies to

W(ζ ) = −h2

4
dθ

dt

∫ 1

−1

|Zf(χ )|2
χ − ζ

dχ . (A 6)

The integral in (A 6) has been put into non-dimensional form using zf = hZf, where

|Zf(ξ )| = (1 + ξ )1−θ (1 − ξ )1−α+θ

g(α, θ )
. (A 7)

Note that the dependence of (A 7) on θ makes |Zf| an implicit function of time.

Appendix B. Unsteady moment integrals
Unsteady contributions from the linearized Bernoulli equation to the total hydrodynamic moment
(2.11) depend on the integrals

M1 =
∫ 1

−1
IM1 (ξ , α, θ ) κ(ξ , α, θ ) dξ , (B 1)

M2 =
∫ 1

−1
IM2 (ξ , α, θ ) κ(ξ , α, θ ) dξ (B 2)

and M3 =
(

∂ξ0

∂s∗
+ 1

η0

∂η0

∂s∗

) ∫ 1

−1

4η0

(ξ − ξ0)2 + η2
0
κ(ξ , α, θ ) dξ , (B 3)
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where

IM1 (ξ , α, θ ) = 1
4
−
∫ 1

−1

|Zf(χ , α, θ )|2
χ − ξ

dχ , (B 4)

IM2 (ξ , α, θ ) = −1
2
−
∫ 1

−1

m(χ , α, θ )
χ − ξ

dχ , (B 5)

κ(ξ , α, θ ) = (1 + ξ )1−2θ (ξ − b)(1 − ξ )1−2α+2θ (B 6)

and m(χ , α, θ ) =
[

ln
1 + χ

1 − χ
+ ln

1 − α + θ

1 − θ

]
(1 + χ )2(1−θ)(1 − χ )2(1−α+θ)

g2(α, θ )
. (B 7)

Cauchy principal values must be taken where indicated by the dashed integral, and it is implicitly
understood that θ = θ (T) such that (B 1)–(B 3) are functions of time. Note that the vortex position
Z maps to point ζ = ξ0(T) + η0(T) in the ζ -plane. The partial derivatives ∂ξ0/∂s∗ and ∂η0/∂s∗
are readily found from differentiating (2.1) along a streamline with non-dimensional arc length
s∗ = s/h passing through the instantaneous vortex location and by taking the real or imaginary
part.

Appendix C. Estimation of parameters based on owl pennula
Approximate order-of-magnitude estimates of the fibre dynamics parameters are determined in
this appendix based on physical characteristics of flexible pennula on the upper surface of owl
wings (cf. figure 1). In the sparsely distributed limit, an isolated pennulum is modelled as a
cantilevered elastic cylindrical rod of diameter d. Assuming a linear load profile along the length
of the fibre, the equivalent torsional spring stiffness at the root of a rigid fibre that yields the same
fibre tip deflection of an elastic rod with the same load profile is kθ = (5π/22)Ed4/h, where E is the
elastic modulus. The mass moment of inertia per unit depth into the page for the fibre of thickness
d is I0 ≈ (

√
π/6)ρfh3d, where ρf is the fibre volumetric density.

The natural frequency of the rigid fibre mounted to a torsional spring is ω2
θ = kθ /Iθ . The

rotational total mass Iθ is the sum of the physical rotational inertia and the effective mass of the
fluid surrounding the fibre when oscillating, (π/4)ρd2 [31]. The square of the natural frequency
can then be written as

ω2
θ = 15

22
E

ρfd2

(
1 + ρ

ρf

)−1 (
d
h

)2
. (C 1)

An approximate Reynolds number can be formed based on ωθh, which in air at standard
conditions is Rωθ

≈ 1.6; this value is consistent with diameter-based Reynolds number estimates
of R=O(1) for owl pennula [32]. The damping coefficient cθ is crudely modelled here on the basis
of a viscous drag restoring moment, cθ ≈ (1/6)ρωθh3dCD. The drag coefficient in air for R= 1.6 is
taken to be CD ≈ 4.8 using the drag model of Tomotika & Aoi [33, fig. 6].

The material properties of the feather keratin that forms the owl pennula are similar to
polypropylene, which has handbook values of ρf ≈ 900 kg m−3 and E≈ 2 GPa (cf. [11]). The
pennula have representative dimensions d≈ 6 µm and h≈ 1 mm [34]. The vortex speed parameter
is assumed to be approximately at the convective speed of eddies near a wall, S≈ 0.7U [35], where
U = 8 m s−1 is a representative owl flight speed [17,36].

The dimensionless parameters in (2.10) can now be estimated from the above information:
Ω = ωθh/S≈ 0.761, cd = cθ /(2I0ωθ ) ≈ 1.85 × 10−3, and μ = I0/(ρh4) ≈ 0.130.
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